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Abstract
Introduction
Count data are often collected in chronic disease research, and sometimes these data have a skewed distribution. The 
number of unhealthy days reported in the Behavioral Risk Factor Surveillance System (BRFSS) is an example of such 
data: most respondents report zero days. Studies have either categorized the Healthy Days measure or used linear 
regression models. We used alternative regression models for these count data and examined the effect on statistical 
inference.

Methods
Using responses from participants aged 35 years or older from 12 states that included a homeownership question in 
their 2009 BRFSS, we compared 5 multivariate regression models — logistic, linear, Poisson, negative binomial, and 
zero-inflated negative binomial — with respect to 1) how well the modeled data fit the observed data and 2) how model 
selections affect inferences.

Results
Most respondents (66.8%) reported zero mentally unhealthy days. The distribution was highly skewed (variance = 
58.7, mean = 3.3 d). Zero-inflated negative binomial regression provided the best-fitting model, followed by negative 
binomial regression. A significant independent association between homeownership and number of mentally 
unhealthy days was not found in the logistic, linear, or Poisson regression model but was found in the negative 
binomial model. The zero-inflated negative binomial model showed that homeowners were 24% more likely than 
nonhomeowners to have excess zero mentally unhealthy days (adjusted odds ratio, 1.24; 95% confidence interval, 1.08
–1.43), but it did not show an association between homeownership and the number of unhealthy days.

Conclusion
Our comparison of regression models indicates the importance of examining data distribution and selecting models 
with appropriate assumptions. Otherwise, statistical inferences might be misleading.

Introduction
Researchers of chronic disease often gather data that are measured on a continuum rather than as a “present–absent” 
or “yes–no” dichotomy. Examples include the following: episodes of a symptom; number of sick days, cigarettes 
smoked, or alcoholic drinks consumed; measures of health care use, such as number of doctor visits or days of 
hospitalization; and costs incurred (in dollars). Such measures are referred to as “count” data; that is, the observations 
can have only nonnegative integer values (0, 1, 2, 3, . . . ). Such data are most often gathered during a specified period 
of time (eg, the past month or year). For some of these measures, most study participants may have a zero count (eg, 
no episode of a symptom, no cigarettes smoked, no use of health care services). These data are typically not normally 
distributed, and the positive skew in their distribution cannot be resolved by data transformation. The Centers for 
Disease Control and Prevention’s (CDC’s) health-related quality of life (HRQOL) Healthy Days measure (1) is an 
example of such count data.

The Behavioral Risk Factor Surveillance System (BRFSS) questionnaire includes an HRQOL section composed of 3 
questions related to respondents’ healthy days. These questions ask respondents to report the number of days in the 
previous 30 days when 1) their physical health was not good, 2) their mental health was not good, and 3) poor physical 
or mental health kept them from doing their usual activities (2). Responses to the Healthy Days questions are count 
data because the response must be an integer. For each of the Healthy Days questions, most respondents report zero 
days (2), and most of the nonzero responses are concentrated in the left side of the distribution, producing a skewed 
distribution with large variance.

Two simple and familiar methods have often been used to analyze Healthy Days data. The first categorizes the data 
into 2 (eg, ≥14 vs <14 d) (3–6) or more (eg, 0 d, 1–13 d, and ≥14 d) categories (7). Although categorizing these data 
may simplify the statistical analyses, there may be drawbacks (8–12), including the loss of information and power 
(8,10,11). Categorization does not make use of within-category information, and all participants above or below a 
particular cut point are treated equally even though the outcome among participants within a particular category may 
vary significantly: for example, 1 bad mental health day in the previous 30 days is quite different from 12 bad days, 
even though 1 and 12 are both in the category of less than 14 days. In addition, the selection of cut points is often 
arbitrary, making it difficult to compare results among studies and hampering meta-analysis. Furthermore, 
categorizing a continuous variable may bias results (9,12).

The second most common method of analyzing the association between various risk factors and the number of 
reported physically and mentally unhealthy days uses linear regression models and keeps the outcome in its original 
scale of 0 to 30 days (13–15). These approaches often violate the assumption of normal distribution of errors, which 
can distort true relationships and render significance tests invalid (16,17). Several regression models are appropriate 

Page 2 of 11Preventing Chronic Disease | Models for Count Data With an Application to Healthy Day...



for analyzing count data, including Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative 
binomial regression (18); however, they have not been used widely in analyzing Healthy Days data (19).

This study used data from the 12 states that included a question on homeownership in their 2009 BRFSS to examine 
the independent relationship between homeownership and number of mentally unhealthy days. Studies have shown 
that homeownership is associated with several health outcomes (20,21), but we are not aware of any study that has 
examined the relationship between homeownership and HRQOL. Our objective was to determine whether using 
different analytic methods produced different findings. We compared 5 multivariate regression models — logistic, 
linear, Poisson, negative binomial, and zero-inflated negative binomial — with respect to 1) how well the modeled data 
fit the observed data and 2) how model selections affect inferences.

Methods
Data source

BRFSS is a state-based system of annual health surveys (22). Data are collected monthly in all 50 states, the District of 
Columbia, Puerto Rico, the Virgin Islands, and Guam. More than 300,000 interviews are completed each year. The 
survey uses a multistage design based on random-digit–dialing methods to gather a representative sample from each 
state’s noninstitutionalized civilian resident population aged 18 years or older. The BRFSS questionnaire consists of 
core component questions asked in all states and optional questions (modules) asked at the discretion of the states. In 
2009, a social context module including a homeownership question was asked in 12 states: Alabama, Arkansas, 
California, Hawaii, Illinois, Kansas, Louisiana, Nebraska, New Mexico, Oklahoma, South Carolina, and Wisconsin. 
Response rates for the 12 states included in this analysis had a median of 59% and ranged from 43% to 67%.

The independent variable for this study was homeownership, based on the following question in the BRFSS: “Do you 
own or rent your home?” The response options are own, rent, or other arrangement (such as group home or staying 
with friends or family without paying rent). We classified respondents who rented a home or lived by other 
arrangement as nonhomeowners. The outcome measure was the number of days reported by respondents to the 
question: “Now thinking about your mental health, which includes stress, depression, and problems with emotions, for 
how many days during the past 30 days was your mental health not good?” Covariates included age, sex, 
race/ethnicity, education, household income, marital status, household size, and employment status. The 2009 BRFSS 
questionnaire is available at www.cdc.gov/brfss/questionnaires/pdf-ques/2009brfss.pdf.

Data analysis
There were 68,258 adults aged 18 or older who responded to both the homeownership and mentally unhealthy days 
questions in the 12 states. We limited the analysis to the 60,113 people aged 35 or older, because those younger than 35 
were unlikely to own a home. We excluded 550 (0.9%) people who had missing data for any of these covariates: 
education, marital status, household size, and employment status. People with missing data on household income (n = 
6,582, 7.5%) were classified as a separate category (“unknown”) and were not excluded from the analysis. The analyzed 
sample included 59,563 adults (22,568 men and 36,995 women).

We first examined the distribution of mentally unhealthy days, including the frequency of zero, mean, median, skew, 
and variance. We then examined the associations between homeownership and number of mentally unhealthy days by 
using 5 models:

Model 1: Logistic regression. This model has been used in previous HRQOL studies (3,5). As was done in previous 
studies (3–5), we dichotomized the data into 2 categories of mentally unhealthy days (≥14 d vs <14 d).

Model 2: Ordinary least-squares (OLS) linear regression. This model also has been used in previous HRQOL 
studies (13–15). This is not a primary model for count data because standard OLS regression makes key assumptions 
about the data, such as the linearity of the relationship between the predictors and the outcome variable and normality 
of errors (residuals) (23).

Model 3: Poisson regression. This regression model is popular and also the simplest regression model for count 
data. It assumes a Poisson distribution, characterized by a positive skew and a variance that equals the mean (18).

Model 4: Negative binomial regression. This model is used when count data are overdispersed (ie, when the 
variance exceeds the mean). Overdispersion, caused by heterogeneity or an excess number of zeros (or both) to some 
degree is inherent to most Poisson data (18). We tested alpha (α), an overdispersion parameter in the negative 
binomial model and also used the likelihood ratio test to determine a preference between the Poisson regression and 
the negative binomial regression.

Model 5: Zero-inflated negative binomial regression. This model provides a way of modeling the excess 
number of zeros (with respect to a Poisson distribution or negative binomial distribution) in addition to allowing for 
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count data that are skewed and overdispersed. It is a 2-component model, which combines the logistic regression 
model and the negative binomial model. The first component of the model, logistic regression for excess zeros, predicts 
the probability of having excess zero unhealthy days. The second component, negative binomial regression for the full 
range of counts, including random zeros, predicts the frequency of the unhealthy day count (18). We used the Vuong 
test, a likelihood-ratio–based test, to compare the zero-inflated negative binomial model with an ordinary negative 
binomial regression model (24). A significant z-test indicates that the zero-inflated model is preferred.

For each model, we plotted the sample (observed) percentage distribution of the number of unhealthy days (from 0 to 
30) against the distribution predicted by the model. If the percentage distribution predicted by a model closely 
matched the observed distribution in the plot, the model was considered a good fit to the data.

In the modeling, we simultaneously adjusted for age (35–44, 45–54, 55–64, and ≥65), sex, race and ethnicity (non-
Hispanic white, non-Hispanic black, Hispanic, and all others), education level (less than high school, high school 
graduate to <4 y of college, and ≥4 y of college ), household income (<25,000, 25,000 to <50,000, ≥50,000, and 
unknown), marital status (married, divorced/widowed/separated, and never married), household size (1 or 2, 3 or 4, 5 
or 6, and ≥7), employment status (employed, unemployed, homemaker, retired, and unable to work). In the univariate 
analyses, all of these covariates were significantly associated with homeownership and significantly associated with the 
number of mentally unhealthy days. We considered these covariates as confounders in the relation between 
homeownership and number of unhealthy days and therefore included them in our multivariate models.

We used Stata version 12 (StataCorp LP, College Station, Texas) to perform all statistical analyses and take into 
account the complex sampling design of the survey.

Results
Among adults aged 35 years or older, about four-fifths (79.3%) owned a home (Table 1). The mean number of mentally 
unhealthy days was 3.3 days and the median was 0 days, indicating a positive skew. An exact Poisson distribution 
having a mean of 3.3 days predicted that about 4% of the participants would have zero unhealthy days during the 30-
day time frame. However, about two-thirds of individuals (66.8%) reported no mentally unhealthy days, indicating an 
excess of zeros. The variance was 58.7, which is much greater than the mean (3.3 d).

The logistic regression analysis found no significant association (P = 0.22) between homeownership and having 14 or 
more mentally unhealthy days in the previous month (Table 2). The parameter estimate (regression coefficient) of 
homeownership was −0.139 (adjusted odds ratio = 0.87, 95% confidence interval [CI], 0.70–1.09).

Both linear and Poisson regression models underestimated the percentage of nonoccurrence (0 days) and 
overestimated the percentage in the category 1 to 9 days (Figure 1). The parameter estimates (regression coefficients) 
of homeownership in these 2 models were not significantly different from zero (Table 2), indicating homeownership 
was not significantly associated with the number of mentally unhealthy days in either model.
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Figure 1. Comparison of the observed percentage distribution of number of mentally unhealthy days and the 
percentage distribution predicted by the multivariate linear and Poisson regression models. Data were obtained from 

the 2009 Behavioral Risk Factor Surveillance System in 12 states. [A tabular version of this figure is also available.]

Negative binomial regression resulted in a better fit of the data than did either linear or Poisson regression (Figure 2). 
The overdispersion parameter (α) in the negative binomial model was 7.2, which is significantly greater than zero (P
< .001), indicating that the data were overdispersed. The likelihood-ratio test was 430,000 (P < .001), suggesting that 
negative binomial regression is preferred over Poisson regression. The parameter estimate of homeownership was 
−0.137 in the negative binomial model (Table 2) (ie, an adjusted rate ratio of 0.87 [exponential (−0.137)] [95% CI, 0.77
–0.99]). Hence, homeowners had about 13% fewer mentally unhealthy days than nonowners (P = .04). 
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Figure 2. Comparison of the observed percentage distribution of number of mentally unhealthy days and the 
percentage distribution predicted by the negative binomial and zero-inflated negative binomial models. Data were 

obtained from the 2009 Behavioral Risk Factor Surveillance System in 12 states. [A tabular version of this figure is 

also available.]

The zero-inflated negative binomial regression provided a better fit of the data than did negative binomial regression 
(Figure 2). The z value of the Vuong test was 42.5 (P < .001), confirming that the zero-inflated model fit the data better 
than the non-zero–inflated model. The parameter estimate in the logistic component of the model was 0.216 (P
= .003) (Table 2); as such, we can interpret the estimate as an adjusted odds ratio of 1.24 [exponential (0.216)] (95% 
CI, 1.08–1.43). Hence, homeowners were 24% more likely than nonhomeowners to have excess zero mentally 
unhealthy days. The parameter estimate in the negative binomial component of the model was −0.011 (P = 0.83) (ie, 
an adjusted rate ratio of 0.99 [exponential (−0.011)] [95% CI, 0.90–1.09]), suggesting no significant association 
between homeownership and the number of unhealthy days. 

Discussion
In studying the association between homeownership and CDC’s Healthy Days measure as an example, we 
demonstrated how different models can influence statistical inference — the process of drawing conclusions from 
empirical data. We did not find an independent association between homeownership and number of mentally 
unhealthy days by logistic, linear, or Poisson regression models. The negative binomial model showed that 
homeowners had a moderate but significantly lower number of unhealthy days than nonhomeowners. The zero-
inflated negative binomial model indicated an association between homeownership and whether individuals reported 
any mentally unhealthy days but not the number of unhealthy days.

We found that a zero-inflated negative binomial model fit the observed number of mentally unhealthy days reported in 
BRFSS data better than any of the other models we tested. Despite its ability to model count data, Poisson regression 
did not fully address the problem of overdispersion. Overdispersion may result in misleading inferences about 
regression parameters (18). Likewise, negative binomial regression may be less able than zero-inflated negative 
binomial regression to address the problem of excess zeros. We did not test all possible models in this study. Other 
models (eg, Hurdle regression, zero-inflated Poisson) can be used to model count data, and there are many 
methodological deviations of the models we applied (18). Researchers should ensure that their analytic methods fit the 
data and also use statistical techniques that lead to meaningful interpretations (25). For example, a researcher may 
find that a zero-inflated negative binomial distribution best fits the data but that a negative binomial distribution 
without the zero-inflation also meets all statistical assumptions and lends itself to more practical interpretations. In 
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such cases, we advise that researchers consider parsimony and practical interpretation of a model when choosing an 
analytical method.

The main purpose of this data analysis was not to establish or affirm the “true” relationships between homeownership 
and number of mentally unhealthy days. We applied various models to BRFSS Healthy Days data as an example to 
illustrate the importance of appropriate model selection. The study has several limitations. First, it was based on self-
reported data from 12 states that elected to include the social context module in its 2009 BRFSS. Second, the survey 
was conducted through telephone interviews; people without telephones and those who used only cell phones were 
excluded; these people may be less likely to be homeowners. Third, the BRFSS is a cross-sectional survey: information 
on the outcome measure (number of mentally unhealthy days) and characteristics (eg, homeownership) of the 
respondents were assessed at a single point in time. Hence, determining whether the association of characteristics with 
outcomes preceded or followed the outcomes was not possible.

Any statistical inference requires some assumptions, and incorrect assumptions can invalidate statistical inference 
(26). Some researchers may ignore the underlying assumptions of their statistical approaches or select a simpler or 
familiar method as long as the results support their hypothesis. These approaches go against the primary goal of 
observational epidemiology, which is to assess the detail, strength, direction, shape, and pattern of the relationships 
between exposures and outcomes. This goal cannot be accomplished without using appropriate statistical methods.

We believe that when the assumptions of analytic techniques are carefully matched to the nature of the data 
distribution, the results will be more accurate and compelling. False results can mislead researchers, the public, and 
policy makers and are potentially detrimental to public health. The selection of data analytic techniques is not a trivial 
statistical matter. Using appropriate analytic procedures will maximize the accuracy and utility of the findings on 
factors that are of great importance in clinical, policy, and fiscal decisions.
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Tables

Table 1. Characteristics of Adults Aged 35 or Older in 12 States , 2009 
Behavioral Risk Factor Surveillance System

Characteristic Unweighted Sample Size % (95% CI)

Age group, y

35–44 9,034 26.8 (26.0–27.7)

45–54 13,997 27.7 (26.9–28.6)

a

b c
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Characteristic Unweighted Sample Size % (95% CI)

55–64 15,281 21.8 (21.1–22.5)

≥65 21,251 23.7 (23.0–24.3)

Sex

Male 22,568 47.7 (46.8–48.6)

Female 36,995 52.3 (51.4–53.2)

Race/ethnicity

Non-Hispanic white 43,901 66.8 (65.8–67.8)

Non-Hispanic black 6,008 8.8 (8.3–9.3)

Hispanic 3,399 15.4 (14.5–16.3)

Other 6,255 9.0 (8.4–9.6)

Education level

<High school 5,575 11.6 (10.9–12.4)

High school graduate to <4 y of college 34,130 51.0 (50.1–51.9)

≥4 y of college 19,858 37.4 (36.5–38.2)

Household income, $

<25,000 15,262 22.6 (21.8–23.4)

25,000 to <50,000 15,006 22.7 (21.9–23.4)

≥50,000 22,713 47.2 (46.3–48.1)

Unknown 6,582 7.5 (7.2–7.9)

Marital status

Married 34,624 68.9 (68.1–69.7)

Divorced, widowed, or separated 19,373 21.1 (20.5–21.8)

Never married 5,566 10. 0 (9.4–10.6)

No. of people in household

1 or 2 18,104 14.4 (14.0–14.8)

3 or 4 31,618 52.5 (51.6–53.4)

5 or 6 8,346 26.4 (25.6–27.3)

7 or more 1,495 6.7 (6.0–7.4)

Employment status

Employed 29,110 56.3 (55.4–57.1)

Unemployed 2,879 7.0 (6.5–7.6)

Homemaker 4,259 8.2 (7.7–8.7)

Retired 18,785 21.6 (21.0–22.3)

Unable to work 4,530 6.9 (6.5–7.4)

Homeownership

Own 49,574 79.3 (78.5–80.2)

Do not own 9,989 20.7 (19.8–21.5)

No. of mentally unhealthy days

0 42,029 66.8 (65.9–67.6)

1–10 11,285 22.2 (21.5–23.0)

b c
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Characteristic Unweighted Sample Size % (95% CI)

11–20 2,587 5.0 (4.6–5.4)

21–30 3,662 6.0 (5.6–6.5)

Alabama, Arkansas, California, Hawaii, Illinois, Kansas, Louisiana, Nebraska, New Mexico, Oklahoma, South Carolina, and 

Wisconsin.
Weighted percentage.
Weighted 95% confidence interval.

Table 2. Comparison of Regression Models in Examining the Association 
Between Homeownership and Number of Mentally Unhealthy Days in the 
Previous Month, 2009 Behavioral Risk Factor Surveillance System From 12 States

Regression Model Parameter Estimate Standard Error P Value

Model 1: Logistic (≥14 d vs <14 d) −0.139 (0.113) .22

Model 2: Linear −0.456 (0.257) .08

Model 3: Poisson −0.085 (0.059) .15

Model 4: Negative binomial −0.137 (0.065) .04

Model 5: Zero-inflated negative binomial

  Zero-inflated component 0.216 (0.072) .003

  Negative binomial component −0.011 (0.050) .83

Nonhomeowner is the reference group in all models. All models included the following covariates: age groups, sex, 

race/ethnicity, education, household income, marital status, household size, and employment status. 
Alabama, Arkansas, California, Hawaii, Illinois, Kansas, Louisiana, Nebraska, New Mexico, Oklahoma, South Carolina, and 

Wisconsin. 

Post-Test Information
To obtain credit, you should first read the journal article. After reading the article, you should be able to answer the 
following, related, multiple-choice questions. To complete the questions (with a minimum 75% passing score) and earn 
continuing medical education (CME) credit, please go to http://www.medscape.org/journal/pcd . Credit cannot be 
obtained for tests completed on paper, although you may use the worksheet below to keep a record of your answers. 
You must be a registered user on Medscape.org. If you are not registered on Medscape.org, please click on the 
“Register” link on the right hand side of the website to register. Only one answer is correct for each question. Once you 
successfully answer all post-test questions you will be able to view and/or print your certificate. For questions 
regarding the content of this activity, contact the accredited provider, CME@medscape.net. For technical assistance, 
contact CME@webmd.net. American Medical Association’s Physician’s Recognition Award (AMA PRA) credits are 
accepted in the US as evidence of participation in CME activities. For further information on this award, please refer to
http://www.ama-assn.org/ama/pub/about-ama/awards/ama-physicians-recognition-award.page . The AMA has 
determined that physicians not licensed in the US who participate in this CME activity are eligible for AMA PRA 
Category 1 Credits™. Through agreements that the AMA has made with agencies in some countries, AMA PRA 
credit may be acceptable as evidence of participation in CME activities. If you are not licensed in the US, please 
complete the questions online, print the AMA PRA CME credit certificate and present it to your national medical 
association for review. 

Post-Test Questions
Article Title: Models for Count Data With an Application to Healthy Days 
Measures: Are You Driving in Screws With a Hammer?

CME Questions

1. Which of the following statements regarding different models of data analysis is most accurate? 

A. Logistic regression evaluates data on a continuum of the complete scale of values

b c

a 

b 

c 

a

b

a 

b 
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B. Ordinary least-squares linear regression is the primary model for count data

C. Poisson regression is the simplest model for count data

D. Zero-inflated negative binomial regression cannot allow for count data that are skewed

2. What is the most common answer from patients regarding the number of poor health days per month on the 

Behavioral Risk Factor Surveillance System (BRFSS) survey? 

A. 0

B. 6

C. 10

D. 14

3. Which of the following statements regarding the results of different data analysis tools is most accurate? 

A. The Poisson regression analysis correctly predicted that 3% of participants had no mentally unhealthy days

B. Linear and Poisson regression models overestimated the percentage with no mentally unhealthy days and 

underestimated the proportion of participants with 1 to 9 unhealthy days

C. Home ownership failed to affect the percentage of mentally unhealthy disease days in all study analyses

D. The zero-inflated negative binomial regression model provided a better fit of the data compared with negative 

binomial regression

Evaluation

1. The activity supported the learning objectives.

Strongly Disagree Strongly Agree 

1 2 3 4 5

2. The material was organized clearly for learning to occur. 

Strongly Disagree Strongly Agree 

1 2 3 4 5

3. The content learned from this activity will impact my practice. 

Strongly Disagree Strongly Agree 

1 2 3 4 5

4. The activity was presented objectively and free of commercial bias. 

Strongly Disagree Strongly Agree 

1 2 3 4 5

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. 
Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, 

or the authors' affiliated institutions.
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